Пенополистирол физические свойства

Физические свойства пенополистирола

08:00 — 19:00 ежедневно
8 (4012) 99 99 22

Собственное производство

Металлическая черепица

Профилированный лист

Металлический сайдинг

Профиль для гипсокартона

Крепления для профиля

Пенополистирол (пенопласт) — теплоизоляционный материал белого цвета. Микроскопические тонкостенные клетки полистирола заполнены воздух­ом (ПСБ) или углекислым газом в случае, если это самозатухающийся пенополистирол (ПСБ-С).

В строительстве интенсивно применяются качественные теплоизоляционные пенополистирольные плиты со стойкими свойствами, низкой стоимостью, простым и быстрым монтажом.

Более полувека, пенополистирол используется при утеплении фасадов с наружным штукатурным слоем.

На сегодняшний день различают пять основных видов производимого пенополистирола:

  • Прессовый пенополистирол.
  • Беспрессовый пенополистирол.
  • Экструзионный пенополистирол.
  • Автоклавный пенополистирол.
  • Автоклавно-экструзионный пенополистирол.

Энергоэффективность и теплопроводность

Коэффициент теплопроводности — основная характеристика теплоизоляционных материалов.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий»
Материал стены Коэффициент теплопроводности Требуемая толщина в метрах
Вспененный пенополистирол 0,039 0,12
Минеральная вата 0,041 0,13
Клееный деревянный брус 0,16 0,5
Пенобетон 0,3 0,94
Керамзитобетон 0,47 1,48
Кладка из дырчатого кирпича 0,5 1,57
Газосиликат 0,5 0,47
Шлакобетон 0,6 1,88
Кладка из силикатного полнотелого кирпича 0,76 2,38
Железобетон 1,7 5,33

Влагостойкость

Теплоизоляционные пенополистирольные плиты не гигроскопичны. Проницание воды в утеплитель составляет не более 0,25 мм за год. Влагостойкость пенополистирола основывается от его структурных характеристик, технологии производства, плотности и продолжительности времени водонасыщения.

Канадская ассоциация строителей разработала и провела ряд испытаний над вспененным пенополистиролом и они выяснили степень воздействия на утеплитель агрессивных погодных условий. В ходе эксперимента материал замораживался и размораживался 50 раз в 4% растворе хлорида натрия. Соляной раствор обеспечивал суровые условия испытания. По итогам эксперимента не выявлено никакого воздействия ни на структуру, ни на сохраность структуры утеплителя.

Пожаробезопасноть

Антипирены (специальные модифицированные добавки) добавляемые производителями пенополистирола, благодаря которым материалу присваиваются различные классы по дымообразованию, воспламенению и горючести.

Данное вещество добавляется в пенополистирол для существенного снижения пожароопасности материала.

В соответствии сертификационного класса, пенополистирол с добавлением антипиренов отличается по степени высокотемпературной деструкции. Пенополистирол сертифицированный по классу Г1 — слабогорючий, степень повреждения по длине испытываемого образца не более 65 процентов.

«Деполимеризация стирола может идти при температурах выше 320°С, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от -40°С до +70°С нельзя. В научной литературе имеются данные о том, что окисления стирола при температуре до +110°С практически не происходит».

Экспертизой доказано отсутствие падения ударной вязкости утеплителя при температуре +65°С в периоде 5000 часов. Так же не выявлено падения ударной вязкости при +20°С в течении 10 лет.

Пенополистирол маркированный буквой «С» в конце названия (например — ПСБ-С) — называется самозатухающимся (класс горючести Г1).

Монтаж производимый в соответствии СНИП 3.04.01-87 «ИЗОЛЯЦИОННЫЕ И ОТДЕЛОЧНЫЕ ПОКРЫТИЯ» и нормам ГОСТа 15588-2014 «Плиты пенополистирольные теплоизоляционные. Технические условия», не является угрозой пожароопасности строительных сооружений.

Биологическая и химическая нейтральность

Зачастую вредность стирола входящего в состав пенопласта или пенополистирола часто преувеличивают.

Проведённые Европейским Химическим Агентством в 2010 г. крупномасштабные научные исследования в соответствии с регламентом REACH, опубликованы следующие выводы:

  1. Мутагенность — нет оснований для классификации;
  2. Канцерогенность — нет оснований для классификации;
  3. Репродуктивная токсичность — нет оснований для классификации.

Эксперимент доказал что, токсичность стирола, не выделяется при использовании утеплителя.

Срок службы пенополистирола

Во время эксплуатации материал не вызывает раздражения кожи, экземы или раздражения дыхательных путей, и глаз. Для работы с материалом не требуется специальных инструментов или снаряжения. Резка возможна с использованием простых инструментов, таких как, ручная пила или нож. Монтаж пенополистирольных плит достаточно простой процесс благодаря низкому весу утеплителя. Всё это делает пенополистирол безопасным и практичным при эксплуатации в гражданском, промышленном и транспортном строительстве.

Монтаж пенополистирола

Долговечность эксплуатации подтверждена различными испытаниями. В 1999 г. Шведский королевский технологический институт опубликовал результаты исследования, научно-исследовательской работы. Опыты обозначили минимальные сроки службы строительных материалов в конструкциях зданий. Так для пенополистирола минимальный срок службы был определён в 60 лет.

Компания «Деловая Русь» производит качественные кровельные и фасадные материалы с 1997 года. Мы предлагаем клиентам продукты соответствующие всем требованиям надёжности, безопасности и комфорта.

Источник: www.bus-rus.com

Мировой опыт

Для применения пенопластов из стиролора, оптимального их использования и обеспечения функциональной надежности на длительное время необходимо обладать знаниями их свойств. Эти пенопласты отличаются от обычных материалов именно тем, что свойства последних уже в достаточной степени известны. Так например, известно, что сталь может ржаветь, дерево — гнить, стекло — разбиваться, а картон теряет свою прочность под воздействием влаги. Уровень информированности о свойствах пенопластов из стиропора часто значительно ниже. В данном выпуске Технической информации рассматриваются свойства, имеющие существенное значение для применения указанных материалов.

  1. Физические свойства
  2. Химические свойства
  3. Биологические свойства

Важным свойством пенопластов из стиропора является их механическая прочность при воздействии нагрузок от короткой до средней длительности.

Пенопласты из стиропора классифицируются по ДИН 7726 как „жесткие пенопласты». Под нагрузкой наблюдается вязкоупругая реакция, что отличает их от поведения хрупко-твердых материалов. Поэтому, в соответствии с ДИН 53421 производится не измерение прочности при давлении, а измерение напряжения сжатия при 10% деформации при сжатии (таблица 1). Это значение лежит, однако, уже в зоне необратимой деформации и имеет значение только как параметр материала (например. при контроле качества), т.к. механические свойства пенопласта зависят от его кажущейся плотности.

Для характеристики нагрузочной способности при длительных нагрузках существенными являются значения, лежащие ниже границы 2%-ной деформации при сжатии.

В проекте общеевропейской нормы „Теплоизоляционные материалы для строительства» описана технология определения долгосрочных параметров ползучести теплоизолирующих пенопластов из стиропора (ППС) при сжатии. Эта технология может в будущем применяться для оценки допустимой нагрузки на практике и проверки поведения материала в условиях длительного сжатия.

Принцип расчета определяется математической формулой, т.н. „уравнением Финдли».

При выполнении заранее определенных предпосылок можно рассчитать долгосрочную деформацию на любой заданный интервал времени. Экстраполякия допустима, однако, не более чем на 30-кратный по сравнению с длительностью испытания период (см. диаграммы на рис. 1).

В таблице 1 приведены также значения прочности при сдвиге, изгибе и растяжении. Эти параметры тоже возрастают по мере увеличения кажущейся плотности.

Таким образом, целесообразно оценивать прочность пенопласта только в сочетании с кажущейся плотностью.

Рис. 1 Поведение пенопласта из стиропора при значениях кажущейся плотности 15, 20 и 30 кг/м 3 и при различных значениях установившегося во времени давления

Еще одним важным физическим свойством жестких пенопластов из стиропора является их великолепные изолирующие свойства по отношению к теплу и холоду. ППС состоит из полистирола. Отдельные ячейки имеют форму полиэдров (многогранников) размером от 0,2 до 0,5 мм с толщиной стенки 0,001 мм. Эти ячейки полностью замкнуты. Пенопласт, таким образом, состоит на прибл. 98% из воздуха и только на 2% из полистирола. Решающим фактором, определяющим теплоизоляционные свойства, является замкнутый в ячейках воздух, который, как известно, обладает очень высокими теплоизоляционными показателями. В противовес другим пенопластам, содержащим иные газы, воздух не покидает ячейки этих пенопластов и их теплоизоляционные свойства сохраняются на постоянном уровне.Теплоизоляционная способность материала определяется его теплопроводностью. Теплопроводность же — это количество тепла (в ваттсекундах), которое при постоянном перепаде температур в 1 К за одну секунду проходит через плоскопараллельный слой вещества толщиной 1 м и поперечным сечением 1 м 2 от более теплой стороны к более холодной. Единица измерения теплопроводности Вт/(м • К). Измерение теплопроводности производится по ДИН 52 612 и, как показывает график на рис. 2, при прочих постоянных условиях определяется кажущейся плотностью (кг/м 3 ) пенопласта. У пенопластов с низкой кажущейся плотностью теплопроводность выше. Она понижается с ростом кажущейся плотности, проходит свой минимум в диапазоне от 30 кг/м 3 до 50 кг/м 3 , а затем начинает постепенно возрастать. Замеренные по ДИН 52 612 значения теплопроводности для пенопласта из стиропора с кажущейся плотностью 20 кг/м 3 при 10°С составляют от 0,033 до 0,036 Вт (м • К).

Рис. 2 Теплопроводность пенопластов из стиропора при различных значениях кажущейся плотности и среднем значении температуры +10° С

Вода и водяной пар

Необходимо принципиально различать водопоглощение и диффузию водяного пара.

В отличие от многих других веществ пенопласты из стиропора не гигроскопичны. Даже находясь под водой, они поглощают очень незначительные количества влаги. Поскольку стенки ячеек непроницаемы для воды, она может просачиваться только по каналам между отдельными, связанными друг с другом ячейками. Это означает, что поглощаемое количество воды зависит как от технологических свойств ППС,так и от условий его переработки, в частности, от процесса вспенивания.

Водопоглощение измеряется по ДИН 53 434. В качестве пробных образцов берутся преимущественно полуфабрикаты и готовые изделия, предусмотренные для практического использования. Как видно из таблицы 1, водопоглощение практически не зависит от кажущейся плотности. Через 28 дней оно может достигать 3% (объемных).

Водопоглощение при выдерживании в воде играет лишь незначительную роль для большинства случаев применения материала и представляет интерес только в особых ситуациях. К таким ситуациям относится использование материала в подземных и фундаментных сооружениях, в поверхностных и подъемных поплавках и т.п.

Диффузия водяного пара

В отличие от воды, водяной пар, содержащийся в воздухе, может при определенном перепаде температур постепенно проникать (диффундировать) в пенопласт и выпадать (конденсироваться) в виде воды при понижении температуры. По отношению к такой диффузии водяного пара различные вещества проявляют большую или меньшую устойчивость. Диффузионное сопротивление(рЭ) определяется произведением коэффициента сопротивления диффузии водяного пара (р) на толщину слоя (Б). Коэффициент сопротивления диффузии водяного пара (р) — это безразмерная величина, которая показывает, во сколько раз сопротивление материала превышает сопротивление воздушного слоя такой же толщины (для воздуха р = 1).

Металлы характеризуются чрезвычайно высокими значениями коэффициента сопротивления диффузии и, поэтому, металлическая фольга применяется в пароизолирующих прокладках. Между двумя крайними значениями для воздуха и для металлов располагаются значения для всех прочих материалов. Жесткие пенопласты могут иметь, в зависимости от кажущейся плотности, различные значения коэффициента сопротивления диффузии водяного пара, лежащие в интервале от р = 20 до р = 100 (см. таблицу 1, расчетные значения по ДИН 4108). При расчете точки росы следует использовать наиболее неблагоприятное для строительной конструкции значение.

Нижняя температурная граница применения жестких пенопластов из стиропора в строительстве практически отсутствует. Объемное сжатие следует учитывать в тех случаях, где это необходимо по температурным условиям (например, при строительстве складов-холодильников). При работе в условиях повышенных температур значение максимально допустимой температуры зависит от длительности температурного воздействия и механической нагрузки на пенопласт (см. таблицу 1).

В случае кратковременного воздействия(склеивание с помощью горячего битума) пенопласт из стиропора может в ряде случаев выдерживать и температуры, значительно превышающие 100°С. При более длительной температурной нагрузке, превышающей 100°С, вспененная структура начинает размягчаться и спекаться.

Все материалы подвержены определенным изменениям размеров, независимо от того, идет ли речь о сырьевых материалах, полуфабрикатах или фасонных изделиях. В случае пенопластов из стиропора различают варианты изменения размеров как в связи с воздействием тепла, так и из-за дополнительной усадки.

Изменение размеров в связи с воздействием тепла

Коэффициент теплового расширения пенопластов из стиропора лежит в интервале от 5 • 10″5 до 7 • 10-5, что соответствует интервалу изменения от 0,05 мм до 0,07 мм на 1 м длины и 1 градус Цельсия. Это означает, что при изменении температуры на прибл. 17°С имеет место обратимое изменение длины равное 0,1 %, т.е. 1 мм/м.

В случаях применений, при которых материалы находятся под воздействием значительных температурных колебаний, необходимо предусматривать особые конструктивные меры.

Необходимо учитывать также и уменьшение размеров (сжатие) пенопластов из стиропора при низких температурах. Если принять за опорную температуру 20°С и считать, что в режиме использования материал охлаждается до -20°С,то в таком экстремальном случае элемент длиной 40 см укорачивается на прибл. 1 мм. Это должно быть учтено при конструировании.

Изменение размеров из-за дополнительной усадки

Дополнительной усадкой называют уменьшение размеров пенопласта, произведенного более 24 часов тому назад, т.е. после того, как завершилась наступающая непосредственно после изготовления усадка, которая частично связана с охлаждением материала.

Уменьшение размеров протекает сначала сравнительно быстро, затем все более и более замедляется и приближается к граничному значению, при котором дополнительная усадка уже не вызывает необходимости в каких-либо специальных конструктивных мерах.

В зависимости от условий переработки и кажущейся плотности пенопласта, дополнительная усадка пенопластовых плит из стиропора лежит в интервале от 0,3% до 0,5%.

Значительная доля дополнительной усадки заранее снимается путем определенной длительности хранения пенопластовых плит на предприятии- изготовителе.

На рис. 3 представлена кривая изменения остаточной дополнительной усадки через 14 дней после изготовления. Конечное значение достигается через приблизительно 150 дней и лежит в пределах от 1,5 мм до 2 мм на метр (от 0,15% до 0,2%). Такое изменение размеров допустимо почти во всех случаях строительного применения. В отличие от теплового изменения размеров, дополнительная усадка необратима.

Если в отдельных случаях оказывается желательным иметь еще более низкий уровень дополнительной усадки, то плиты должны перед употреблением соответственно вылеживаться.

Рис. 3 Изменение остаточной дополнительной усадки пенопластовых плит из стиропора через 14 дней после изготовления

Таблица 1 Физические характеристики пенопластов из стиропора

Таблица 2 Устойчивость пенопластов из стиропора к воздействию химических веществ

+ утойчив: пенопласт не разрушается даже при длительном воздействии

+ -условно устойчив: при длительном воздействии пенопласт может дать усадку или разрушается поверхностный слой

— неустойчив: пенопласт более или менее быстро дает усадку или растворяется

Ассортимент продукции включает в себя стиропор VFН 106, из которого могут производиться пенопласты, обладающие более высокой стойкостью к воздействию неароматичных углеводородов, чем пенопласты из стиропора других марок. Пригодность этого материала для применения в том или ином случае должна обязательно проверяться.

Влияние излучений и атмосферных условий

Излучения высоких энергий, например, коротковолновое УФ-излучение, рентгеновское или у-излучение вызывают при длительном воздействии возникновение хрупкости структуры пенопласта. Этот процесс зави¬сит от вида излучения, дозы и длительности воздействия. На практике имеет значение только УФ-излучение. При длительном воздействии ультрафиолетовых лучей поверхность пенопласта желтеет и становится хрупкой, что может приводить к эрозии из-за воздействия дождя и ветра. Влияние ультрафиолетовых лучей и эрозия надежно предотвращаются даже самыми простыми средствами, например, окраской, нанесением облицовочного слоя, кэшированием и т.п. Как показывает опыт нескольких десятилетий использования потолочных плит, доля УФ-излучения в световом потоке внутри помещений настолько мала,что пенопласту из стиропора никакого ущерба не наносится.

2. Химические свойства

Пенопласты из стиропора обладают стойкостью к воздействию многих химических веществ.

При применении клеев, окрасочных материалов, растворителей или при воздействии концентрированных паров таких веществ необходимо, однако, считаться с возможностью повреждений. Подробные сведения о химической стойкости пенопластов из стиропора приведены в таблице 2.

3. Биологические свойства

Пенопласты из стиропора не могут служить питательной средой для микроорганизмов. Пенопласт не загнивает, не плесневеет и не разлагается. Только в особых случаях, например, при сильном загрязнении пенопласта, на нем могут размножаться микроорганизмы. При этом сам пенопласт выполняет лишь функцию подложки, не принимая абсолютно никакого участия в биологическом процессе. Даже бактерии почвы не наносят материалу никакого ущерба. Вообще говоря, правильно изготовленные пенопласты из стиропора полностью отвечают соответствующим рекомендациям федерального ведомства здравоохранения Германии и, в связи с этим, допущены для производства изделий, предназначенных для пищевой продукции и пищевой промышленности. Они не обладают никакими экологически вредными свойствами и не наносят ущерба водоемам. С учетом соответствующих местных предписаний они могут устраняться или сжигаться совместно с бытовыми отходами.

Пенопласты из стиропора сохраняют стабильность формы при повышенной температуре до 85°С. При этом не наблюдается каких-либо признаков разложения или выделения ядовитых газов. Более подробная информация о поведении при высоких температурах, поведении при горении и токсичности продуктов термического разложения приведена в Технической информации Т1 0/1-130 „Пове¬дение пенопластов из стиропора при горении».

Приводимые в настоящей Технической информации сведения базируются на знаниях и опыте, которыми мы располагаем в настоящее время. В связи со значительным количеством факторов, могущих оказывать влияние на процессы переработки и использования наших продуктов, эти сведения не освобождают пользователя от проведения собственных испытаний и контроля. Данные настоящей брошюры не могут рассматриваться как обязательная в правовом смысле гарантия определенных свойств продукта или его пригодности для определенных случаев применения. Получатель нашей продукции обязан под собственную ответственность соблюдать существующие защитные права, а также действующие законы и предписания.

БАСФ Акциенгезелльшафт г. Людвигсхафен, Германия

Источник: aspp.com.ua

Описание свойств и технических характеристик пенополистирола

Обустройство отопления в квартире обходится недешево. Сделать его качественным можно, используя экструдированный пенополистирол. Технические характеристики его находятся на высоком уровне, а потому материал считается одним из лучших в своем роде. Он не крошится, считается удобным в монтаже. Обустройство его не приводит к расходу большого объема полезного пространства в помещении.

Свойства материала

Материал отличается ячеистой структурой. Оболочка у него тонкая, сделана из полистирола. Примерно 98% его структуры заполнено воздухом. Это своеобразная твердая пена, вот почему его называют пенополистиролом. Внутри него имеется множество пузырьков. За счёт этого материала удаётся отлично удерживать тепло. Пребывающая без движения воздушная прослойка представляет собой хороший теплоизолятор.

За счет пузырчатой структуры – пенополистирол является хорошим теплоизолятором

Если сравнивать с минеральной ватой, показатель теплопроводности у этого материала невысокий. Коэффициент ее варьируется в пределах 0,028-0,034 ватт на метр на Кельвин. Чем плотнее пенополистирол, тем больше указанный показатель. Для экструдированного материала с плотностью 45 кг на кубометр указанный параметр составляет 0,03 Ватт на метр на Кельвин. Этот показатель актуален, если температура окружающего пространства не меньше -50 и не более +75 градусов.

Прочие особенности

Паропроницаемость экструдированного пенополистирола равна нулю. Если же речь идет о вспененном материале, то указанный показатель будет иным. Дело в том, что изготавливают его по другой технологии. Формовка его осуществляется посредством разрезания большого блока на фрагменты необходимой толщины. Через образованные вспененные шарики проникает пар. Он достигает воздушных ячеек.

Обычно экструдированный пенополистирол не разрезают. Из экструдера они поступают уже с гладкой поверхностью и определённой толщиной. Вот почему пар проникнуть в него не может.

Вспененный пенополистирол впитывает до 4% влаги, если его погрузить в воду. Водные виды, сделанные посредством метода экструзии, остаются почти сухими. Изделия вбирают в себя всего лишь 0,4%, то есть в 10 раз меньше воды.

Экструдированный пенополистирол (ЭППС) считается самым прочным. У него имеется самая крепкая связь между молекулами. Показатель прочности статического изгиба варьируется от 0,4 до 1 кг на кв. см. Вспененные разновидности по этой причине используются меньше. Метод экструзии признан более эффективным, потому что он предоставляет возможность получения современного материала с хорошими показателями влагостойкости и прочности.

Полистирольный пенопласт и экструзионный пенополистирол состоят из одного и того же вещества. Отличаются они по технологии создания гранул.

Обзор характеристик экструдированного пенополистирола представлен в данном видео:

Воздействие внешних факторов

Олифа, ацетон и определенные виды лаков могут повредить структуру материала и даже растворить его. В этом плане опасность представляют любые продукты, полученные вследствие перегонки нефти. То же самое касается отдельных видов спирта.

На какие вещества не реагирует материал:

Материал не любит прямых лучей солнца. Под воздействием ультрафиолетового облучения он теряет свою прочность и упругость. Дополнительным разрушающим фактором являются погодные явления, такие как дождь, ветер и снег.

Звукопоглощение и биоустойчивость

В результате исследования удалось установить, что плесень не приживается в структуре пенополистирола. Это доказали учёные из США, которые провели соответствующие опыты в 2004 году. Заказчиком их выступали фирмы-производители из Америки.

Пенополистирол не подвержен поражению грибка и плесени

Если хочется спастись от лишних звуков с улицы, пенополистирол в этом вряд ли поможет. Он способен приглушать ударный шум, но для этого надо укладывать его толстым слоем. Что касается воздушных шумов, пенополистирол справиться с ними тоже не может. Ячейки с воздухом у него располагаются жёстко. Изнутри они изолированы полностью. Вот почему для распространяющихся по воздуху звуковых волн следует обустраивать другие преграды.

Экологичность и горючесть

Продолжительность службы полистирола довольно велика. За весь период эксплуатации материал не теряет собственных свойств. Если верить испытаниям, можно много раз его замораживать и размораживать, характеристики экструдированного пенополистирола от этого не пострадают. Материал включает в себя антипирены, а потому не подвержен воздействию огня. При этом на воздухе неизбежно случается процесс окисления.

Пенополистирол является самозатухающим материалом, поэтому не подвержен действия огня

У вспененного пенополистирола структура рыхлая, к тому же он восприимчив к механическим воздействиям и износу. Экструдированный материал меньше подвержен окислению, но рано или поздно его ожидает аналогичная участь. Пенополистирол, уложенный только что, ещё и выделяет стирол, потому что на стадии производства невозможно обеспечить полную полимеризацию. Пока этот процесс не будет завершён, выработка указанного вещества продолжается.

Профессионалы часто обсуждают вопрос о вредности пенополистирола. Производители пытаются привести различные доводы в пользу изготавливаемого ими материала. В частности, они утверждают, якобы он менее вреден, нежели древесина. Компании делают акцент на том, что при горении дерево выделяет токсичные соединения, пенополистирол же образует двуокись углерода. Однако, если температура горения превысит 80 градусов, произойдет выброс паров вредных веществ. Это соединения бензола, толуола и стирола.

Горит любой материал. Производители несколько лукавят, утверждая, якобы пенополистирол способен самостоятельно затухать. Неточным является утверждение о том, что он менее опасен, чем древесина. Если заглянуть в официальное описание в ГОСТ, можно найти информацию о том, что пенопласты относятся к группе наиболее опасных веществ.

Продолжительность службы

Если использовать пенополистирол правильно, покрывая его декоративной штукатуркой, срок его службы удастся увеличить до 30 лет. Но в реальности всё оказывается не столь прекрасно, как кажется. Долговечность понижается по причине человеческого фактора. Мастера нередко обустраивают теплоизоляцию некачественно. Да и сами заказчики порой пытаются сэкономить на материалах. Если монтажом занимался неопытный работник, то вряд ли он сможет укладывать правильно пенополистирольные плиты.

Срок службы утеплителя зависит от качества материала и правильности монтажа

Распространенной ошибкой является неправильный подсчет толщины изделий. Почему-то многие думают, что если взять толстую плиту толщиной 30 см, она будет служить дольше и обеспечит дом теплом. В реальности же он больше будет страдать от температурных перепадов и покроется трещинами. Туда без особых усилий проникнет прохладный воздух с улицы. В странах Европы, согласно установленным нормам, используют пенополистирол толщиной не больше 3,5 см.

Советы по выбору

Характеристики, свойства пенополистирола должны быть тщательно изучены перед покупкой. Он считается одним из самых популярных материалов для строительных работ.

Его преимуществами являются:

  • легкость;
  • доступная цена;
  • способность обеспечивать комфортные температуры в помещении;
  • простота работы.

С каждым годом появляется все больше производителей, утверждающих, что их пенополистирол самый лучший. Потеряться в таком широком ассортименте не составляет труда.

Сфера применения

Пенополистирол используется в качестве элемента для утепления различных объектов. Это могут быть, к примеру, водопроводные трубы.

Применяют его для работ с:

  • оконными и дверными откосами;
  • кровлей;
  • полом;
  • стенами.

Пенополистирол высокой плотности требуется там, где предъявляются высокие требования к качеству конструкций. Применение для изоляции труб является оправданным в экономическом отношении. Берут блочный пенополистирол с той целью, чтобы в случае повреждения можно было с легкостью получить доступ к трубе. Для этого убирают определенный участок защитного покрытия.

Пенополистирол активно применяется при утеплении труб

Пенополистирол находит активное применение при обустройстве транспортных путей. Его применяют потому, что он понижает вертикальную нагрузку на полотно дороги при строительстве сооружений. Его задействуют и в сфере производства СИП-панелей. Можно сказать, что область использования его почти ничем не ограничена. Он отличается небольшой плотностью, поэтому недостаточно устойчив к механическим повреждениям. Это надо учитывать, выбирая его в качестве материала для работы.

Утепление стен и полов

Чтобы работать со стенами, прибегают к двум технологиям. Согласно первой, монтируют утеплитель при помощи длинных гвоздей с широкими шляпками. Вторая методика предполагает установку посредством специальных клеящих веществ. Перед нанесением очищают рабочую поверхность от грязи. Материал также тщательно зачищают. Стену надо немного намочить. Наносят клей небольшими фрагментами с промежутком 20 см. Если работы производятся на керамзитобетонной стене, его потребуется больше.

Клей обладает пластичностью, потому позволяет быстро устранять любые дефекты, придавать плите правильное положение. Необязательно склеивать плиты по стыковому шву. Пока высыхает связующее вещество, можно закидывать досками экструзионный или блочный пенополистирол, прижав его к утеплённый плоскости. Как только клей окончательно высохнет, ее покрывают штукатуркой, укладывают облицовочный кирпич или монтируют декоративные панели.

Для утепления пола плиты используют потому, что они обладают хорошей несущей способностью и жесткостью. Благодаря хорошей изоляции, потери тепла через нижние перекрытия сводятся к нулю. Уменьшается уровень шума, проникающего через их структуру.

Укрепляют плиты пенополистирола или дюбелями или клеющей смесью

Чтобы утеплить пол, используют плиты с толщиной не более 50 мм. Кладут их поверх рулонного или сыпучего материала с изолирующими характеристиками. Располагают между лагами. Обязательной является герметизация стыковых швов между ними. После этого делают бетонную стяжку слоем в 6 см. Вместо стяжки допустимо использовать древесно-стружечные плиты. Сухой пол или бетонная стяжка играет роль амортизационного компонента. За счёт такой прослойки можно исключить попадание в конструкцию пола звуковых колебаний.

Пенополистирол был и остаётся востребованным теплоизолятором, хоть и способен выделять вредные компоненты при чрезмерном нагревании. В качестве утеплителя у него есть немало преимуществ.

Изделие можно с легкостью разрезать простым ножом, да и доступен он по минимальной цене. Он практически не впитывает влагу, при этом обеспечивает квартиру оптимальным уровнем тепла.

У материала имеются определенные недостатки, но разработчики постоянно работают над формулой. Они добавляют разного рода добавки, но никому не раскрывают своих рецептов. Пенополистирол нового поколения содержит различные компоненты для борьбы с неблагоприятными условиями среды. Это антипирены, не позволяющие распространяться огню, и предотвращающие горение. Активные работы ведутся в плане долгосрочности изделий, выработки стойкости к внешнему воздействию.

Источник: kaminguru.com

Пенопласт — свойства и характеристики недорогого утеплителя

Пенопласт – один из самых эффективных синтетических утеплителей, используемых для наружной и внутренней отделки дома. Он быстро приобрел популярность благодаря хорошим эксплуатационным качествам и стал распространяться в многочисленных областях частного и промышленного строительства.

Состав и структура материала

Основной компонент пенопласта – вспененный полистирол, причем самого полимера в готовом продукте содержится всего около 2% (по объему). Все остальное пространство занимает газ (природный или углекислый), заключенный в замкнутые полистирольные капсулы или ячейки. Макроструктура материала представляет собой гранулы диаметром в несколько миллиметров, спрессованные и затем разрезанные в конгломераты разной формы.

Стенки полимерных капсул обладают минимальной пористостью, поэтому в ячейки с газом почти не попадает влага. Это поддерживает низкую плотность пенопласта и сохраняет его теплоизоляционные качества. Для снижения горючести в материал вводят ряд добавок, снижающих время самостоятельного горения (без внешнего источника пламени). Благодаря этому повышается пожаробезопасность при условии кратковременного воздействия огня.

Физические свойства пенопласта

К главным характеристикам пористого полистирола относятся:

  • прочность – пенопласт не отличается выдающимися прочностными характеристиками и способен крошиться и ломаться даже при слабом механическом воздействии. Его можно легко повредить при помощи острых предметов или просто ударив по поверхности. Чтобы снизить вероятность разрушения, пенопласт покрывают слоями более твердого материала, равномерно распределяющего внешние нагрузки;
  • гибкость – пенополистирол слабо поддается изгибающим воздействиям и может сломаться под ними в любой момент. По этой же причине пенопластовые плиты устанавливают лишь стационарно, избегая любых крутящих нагрузок;
  • теплопроводность – наличие в полых капсулах газов (естественных теплоизоляторов) обеспечивает материалу низкий коэффициент теплопередачи. Этому также способствует отсутствие конвекции внутри пор из-за их малого диаметра. Чтобы полностью прогреть кусок пенопласта до заданной температуры, понадобится длительное время;
  • склонность к усадке – свободнолежащие плиты из пенополистирола поддаются незначительной усадке, вызванной силой тяжести. Величина усадки составляет 1,5-3 мм в течение шести месяцев. По окончании этого срока естественное уплотнение материала прекращается;
  • температурное расширение – при повышении температуры линейные размеры плиты увеличиваются (процесс является обратимым). Численные показатели расширения соответствуют примерно 1 мм на 1 м плиты пенопласта при изменении температуры на 15-20 °С;
  • паропоглощение – пенопласт менее стоек к диффузионному проникновению влаги, чем к воздействию жидкой воды, поэтому в особо влажных помещениях его поверхность дополнительно прикрывают слоем металлической фольги. При ее отсутствии часть водяных паров может проникать через слой материала и конденсироваться при снижении температуры, что отрицательно влияет на всю теплоизоляционную систему.

Химические свойства

К эксплуатационным параметрам материала, обуславливающим долговечность под действием внешних факторов, относятся:

  1. химическая устойчивость – пенополистирол невосприимчив ко многим веществам, кроме растворителей и кислот-окислителей. Смеси на основе ацетона, эфиров и легких углеводородов быстро растворяют пенопласт, не оставляя от него даже видимых следов. Со щелочами пенопласт умеренно устойчив, однако, специально подвергать их воздействию все же не стоит;
  2. температурная стойкость – пенопласт имеет низкую температурную границу разрушения. Уже при 60-70 °С из него начинают выделяться газы, являющиеся продуктами деструкции исходного полимера. При температуре выше 100 °С разложение полистирола происходит особенно интенсивно и сопровождается еще большим количеством токсичных выделений. Тяжелые последствия на организм могут наступить даже спустя несколько дней после их вдыхания.

Пожарная безопасность пенопласта двояко трактуется сторонниками и противниками материала. Первые утверждают про его высокую устойчивость к пламени, аргументируя это тем, что подожженный пенопласт практически не поддерживает огонь без постороннего источника тепла. Вторые сетуют на выделение большого количества газов при пожаре, вредных для человека. При объективном рассмотрении пенопласт – довольно горючее вещество, требующее правильного обращения при отделке зданий.

Видео: Пенопласт (пенополистирол, ППС, EPS). Преимущества и недостатки.

Биологические свойства пенопласта

Пенопласт относится к группе строительных материалов, которые не поддаются воздействию микроорганизмов. Из-за слабого водопоглощения на поверхности пенопласта очень медленно образуется плесень. Грибковые поражения пенополистирола можно наблюдать лишь в очень влажных помещениях с отсутствующей вентиляцией.

В отличие от бумаги или древесины, пенопласт не разрушается при появлении плесени, а ее налеты можно легко очистить с поверхности вручную. Деструкция утеплителя, наблюдаемая на протяжении длительного времени, связана не с биологическими факторами, а с действием ультрафиолета, тепла и кислорода воздуха.

Применение пенопласта в ремонте и строительстве

Благодаря невысокой стоимости, малой плотности и хорошим теплоизоляционным качествам, пенопласт используют во всех строительных сферах – от возведения капитальных стен до отделки помещений. Его часто рекомендуют в качестве утеплителя крыши и подкровельного пространства, уложенного снаружи и внутри здания. Чтобы получить действительно экологичную и безопасную постройку, к отделке пенопластом следует подходить с большим вниманием.

Способы использования пенополистирола:

  • обшивка наружной части стен. Внешний пенопластовый слой необходимо покрыть слоем штукатурки или другого прочного материала, чтобы избежать разрушения при механическом и солнечном воздействии;
  • отделка помещения изнутри. При возведении небольших домов часто используют метод несъемной опалубки, при котором промежуток между стенами из пенопластовых блоков заливается бетоном. Чтобы защитить жильцов в случае пожара, внутренний слой пенопласта нужно укрыть слоем штукатурки толщиной не менее 30 мм.
  • как прослойка между двумя стенами – используется в капитальном строительстве и является оптимальным строительным решением. Такие постройки не обладают выдающимися теплотехническими характеристиками, однако, температура в них зимой все же выше, чем в домах без пенопласта, а в жару внутренние поверхности стен нагреваются меньше. Подобное расположение более безопасно с пожарной точки зрения, поскольку даже при интенсивном возгорании прослойка не сможет воспламениться.

Видео: Утепление пенопластом фасад. Как выбрать пенопласт. Как выбрать сетку для пенопласта.

Совет: при использовании пенопласта внутри помещения через него не следует прокладывать трубы отопления и подвода горячей воды, а также электрическую проводку без металлического гофрирования. Локальные перегревы в местах контакта пенопласта с коммуникациями будут приводить к ускоренному разложению полистирола и выделению вредных паров.

Выводы: пенопласт – эффективный теплоизоляционный материал, обладающий стойкостью к влаге и не изменяющий своих характеристик при условии нормальной эксплуатации. Из-за слабой устойчивости пенополистирола к высоким температурам и чрезвычайной токсичности продуктов горения следует уделять особое внимание его защите негорючими и огнестойкими покрытиями. Пенопластовые утеплители лучше всего использовать для защиты внешней стороны стен и теплоизоляции в межстенном промежутке, чтобы исключить возможность их нагрева и разложения.

Источник: ratingstroy.ru

Полистирол и его сополимеры

Полистирол / PS

Основные физико-химические свойства полистирола

Полистирольные пластики представляют собой многочисленную группу термопластичных материалов, химический состав полимерной части которых содержит мономер стирол или продукты его сополимеризации. Широко используются полистирол общего назначения (ПС), вспенивающийся полистирол, ударопрочный полистирол (УПС) и АБС-сополимеры.

Полистирол имеет большое значение среди современных видов конструкционных пластмасс. Хотя в настоящее время удельный вес полистирола в объеме производства синтетических смол и пластмасс составляет менее 6%, но области применения этого вида полимера, обусловленные широким спектром физико-механических свойств, охватывают все сферы промышленности, начиная от производства товаров народного потребления и заканчивая автомобильной промышленностью и строительством.

По физическим свойствам полистирол представляет собой термопластичный полимер линейного строения. Аморфный, бесцветный, прозрачный, хрупкий продукт. Не токсичен. Для полистирола характерны легкость переработки, склеиваемость, хорошая окрашиваемость в массе и очень хорошие диэлектрические свойства.

Таблица. Физические свойства полистирола.



Обозначение Единица измерения
Плотность г/см3 1,05
Температура стеклования Тст. °С 93
Температура самовоспламенения Тсв. °С 440
Предел прочности при растяжении σраст. 40-50
Модуль упругости при изгибе ГПа 3,2
Относительное удлинение % 1,2-2
Теплопроводность Вт(м∙К) 0,08-0,12
Теплостойкость по Мартенсу °С 70
Твердость по Бринелю МПа 140-200
Усадка при литье % 0,4-0,8
Удельное электрическое сопротивление ρv ε 2,5-2,6
Нижний концентрационный предел воспламенения КПВ г/м3 25-27,5
Полистирол легко растворим в собственном мономере, ароматических углеводородах, сложных эфирах, ацетоне. Не растворяется в низших спиртах, алифатических углеводородах, фенолах, простых эфирах. Полимер обладает низким влагопоглощением, устойчив к радиоактивному излучению, к кислотам и щелочам, однако разрушается под действием концентрированной азотной кислоты и ледяной уксусной. На воздухе при УФ облучении полистирол подвергается старению: появляются желтизна и микротрещины, происходит помутнение, увеличивается хрупкость. Термодеструкция начинается при 200 °С и сопровождается выделением мономера. Недостатки полистирола – его хрупкость и низкая теплостойкость. Невелико сопротивление ударным нагрузкам. При температурах выше 60°С снижается формоустойчивость.

Для получения материалов, обладающих более высокой теплостойкостью и ударной прочностью, чем полистирол, используют его смеси с другими полимерами и сополимеры стирола. Наибольшее промышленное значение имеют блок- и привитые сополимеры, а также статистические сополимеры стирола с акрилонитрилом, акрилатами и метакрилатами, α-метилстиролом и малеиновым ангидридом.

ПС обладает средней газопроницаемостью (выше, чем у ПП, но ниже, чем у ПЭНП), но высокой паропроницаемостью. Паропропускание быстро понижается при отрицательных температурах, что позволяет использовать ПС для упаковки продуктов при низких температурах.

ПС имеет отличные электрофизические свойства – низкие диэлектрические потери, высокую электрическую прочность, высокое объемное сопротивление. Химически он стоек к сильным кислотам и щелочам, нерастворим в углеводородах алифатического ряда и слабых спиртах; растворим в ароматических углеводородах, высших спиртах, сложных эфирах и хлорированных углеводородах. Из ориентированной ПС пленки можно получать термоформованием очень сложные изделия.

Основные группы полистирольных пластиков / Styrene polymers

По химическому строению полистирольные пластики делятся на четыре основные группы:

  1. гомополистирол (или полистирол общего назначения – ПСМ, ПСС), вспенивающийся полистирол (ПСВ, ПСВ-С);
  2. статистические сополимеры стирола, например, двойные сополимеры стирола с метилметакрилатом (МС), акрилонитрилом (САН) и др., тройной сополимер – стирол-метилметакрилат-акрилонитрил (МСН);
  3. привитые сополимеры стирола, к которым относятся ударопрочный полистирол, АБС-сополимеры, сополимер МСП;
  4. полимерные композиты (полимер — полимерные смеси), например, АБС-ПВХ, АБС–ПК, ударопрочный полистирол – полифениленоксид, стеклонаполненные АБС и САН, трудногорючие марки ударопрочного полистирола и АБС.

Применение полистирола в упаковке

Двухосноориентированная пленка обладает прекрасной прозрачностью. Температура размягчения составляет 90-95°С. Ориентированный полистирол имеет среднюю газопроницаемость (выше чем у ПП, но ниже, чем у ПЭНП), но высокую паропроницаемость. Паропроницаемость быстро понижается при температурах ниже 0°С, что позволяет использовать ПС для упаковки продуктов при низких температурах. Из ориентированной ПС пленки методом термоформования получать изделия сложной конфигурации.

Ориентированный ПС толщиной менее 75 мкм используют для «окошек» в картонных упаковочных коробках. Более толстые пленки используются для получения стаканчиков для торговых автоматов, подносов для фасованного свежего мяса, с тем, чтобы видеть при покупке обе стороны упаковываемого продукта.

Ударопрочный полистирол (УПС) представляет собой блоксополимер стирола с каучуком. В немодифицированном состоянии ПС — хрупкий материал, и его удельная ударная вязкость недостаточна для многих применений.

Ударопрочный ПС более гибок, имеет большую ударную прочность, но меньшую прочность при растяжении и термическую стойкость, чем немодифицированный ПС. Химические свойства немодифицированного ПС одинаковы со свойствами. Ударопрочный ПС — превосходный материал для получения различных изделий методом термоформования. Введение в ПС синтетических каучуков, уменьшая хрупкость, снижает прозрачность ПС.

Вспененный полистирол обладает высокой жиростойкостью, является прекрасным теплоиэолятором. Применяется для изготовления различных упаковочных изделий методом термоформования (прокладки в ящики для яблок, коробочки для фасовки яиц, подносы и лотки для расфасовки свежего мяса, рыбы, чипсов и т.д.).

Сополимеры стирола с акрилонитрилом (САН) имеют более высокую химическую стойкость по сравнению с базовым полимером ПС.

АБС-пластик — сополимер стирола, бутадиена, акрилонитрила. Его свойства варьируются в широких пределах в зависимости от состава композиции и метода производства. АБС пластик имеет более высокую ударную вязкость, химическую стойкость и пластичность, чем УПС. Применяется в виде банок и подносов.

Источник: ref.unipack.ru

Читать еще:  Крепление натяжного потолка к стене из гипсокартона
Ссылка на основную публикацию
Adblock
detector